Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella
نویسندگان
چکیده
Experimental analysis of isolated ciliary/flagellar axonemes has implicated the protein kinase casein kinase I (CK1) in regulation of dynein. To test this hypothesis, we developed a novel in vitro reconstitution approach using purified recombinant Chlamydomonas reinhardtii CK1, together with CK1-depleted axonemes from the paralyzed flagellar mutant pf17, which is defective in radial spokes and impaired in dynein-driven microtubule sliding. The CK1 inhibitors (DRB and CK1-7) and solubilization of CK1 restored microtubule sliding in pf17 axonemes, which is consistent with an inhibitory role for CK1. The phosphatase inhibitor microcystin-LR blocked rescue of microtubule sliding, indicating that the axonemal phosphatases, required for rescue, were retained in the CK1-depleted axonemes. Reconstitution of depleted axonemes with purified, recombinant CK1 restored inhibition of microtubule sliding in a DRB- and CK1-7-sensitive manner. In contrast, a purified "kinase-dead" CK1 failed to restore inhibition. These results firmly establish that an axonemal CK1 regulates dynein activity and flagellar motility.
منابع مشابه
Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axo...
متن کاملRegulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas.
Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would...
متن کاملAnalysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
Generating the complex waveforms characteristic of beating eukaryotic cilia and flagella requires spatial regulation of dynein-driven microtubule sliding. To generate bending, one prediction is that dynein arms alternate between active and inactive forms on specific subsets of doublet microtubules. Using an in vitro microtubule sliding assay combined with a structural approach, we determined th...
متن کاملAsymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella.
Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding betwee...
متن کاملRegulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase.
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 186 شماره
صفحات -
تاریخ انتشار 2009